|    |                                          | (       | Gove   | rnm   | ent S    | Scien  | ice C   | olleg    | e, Va  | inka  | 1     |     |      |      |     |     |
|----|------------------------------------------|---------|--------|-------|----------|--------|---------|----------|--------|-------|-------|-----|------|------|-----|-----|
|    |                                          | Short 1 | term ( | Cours | e: Adv   | ancen  | nent in | Greei    | 1 Ener | gy Sy | stems |     |      |      |     |     |
|    |                                          |         |        | Dunat | Course   | e Code | (2 hour | HYU2     | atura) |       |       |     |      |      |     |     |
|    |                                          |         |        | Durat | 1011: 50 | Hours  | (2 nour | s per le | cture) |       |       |     |      |      |     |     |
| C  | Full Name of the Participant             | 07      | OL.    | 051   | A        | oF     | 08.     | 10%      | 17.    | 121   | 17/   | 18, | 14.  | 201  | 24  | 22  |
| No | run (vanie of the l'articipant           | 101     | 1/01   | 101   | 101      | 101    | 701     | 1/01     | -701   | 101   | 101   | 101 | =/01 | 101  | 101 | 101 |
| 1  | CHAUDHARI JINALKUMARI<br>NATHUBHAI       | P       | P      | P     | P        | P      | Р       | Ρ        | P      | P     | P     | P   | P    | P    | P   | P   |
| 2  | CHAUDHARI PRATIKKUMAR<br>BABUBHAI        | P       | P      | P     | P        | P      | P       | P        | P      | P     | P     | P   | P    | P    | P   | P   |
| 3  | CHAUDHARI RAZKUMAR<br>JAGDISHBHAI        | P       | A      | A     | A        | Ρ      | A       | A        | P      | P     | P     | P   | P    | P    | P   | P   |
| 4  | CHAUDHARI SMRUTI<br>ALKESHBHAI           | P       | P      | P     | P        | P      | P       | P        | P      | P     | P     | P   | P    | P    | P   | A   |
| 5  | GAMIT URVESHKUMAR<br>VISHRAMBHAI         | Р       | P      | P     | A        | P      | A       | P        | P      | A     | P     | A   | P    | P    | P   | P   |
| 6  | PATEL AKSHAYAKUMAR<br>ASHOKBHAI          | P       | P      | P     | A        | P      | A       | P        | P      | p     | A     | A   | A    | P    | P   | P   |
| 7  | VASAVA AMISHABEN<br>HARISINGBHAI         | P       | P      | P     | P        | P      | P       | P        | P      | P     | P     | P   | P    | P    | P   | P   |
| 8  | VASAVA DIMPALBEN<br>GAMBHIRBHAI          | P       | r      | P     | P        | P      | P       | P        | P      | P     | P     | P   | P    | P    | P   | P   |
| 9  | VASAVA KRISHNA SONJIBHAI                 | P       | A      | P     | A        | A      | A       | P        | A      | A     | P     | A   | P    | A    | A   | P   |
| 10 | CHAUDHARI HARSHKUMAR<br>NARUBHAI         | P       | P      | P     | A        | A      | A       | P        | P      | A     | A     | A   | A    | P    | A   | A   |
| 11 | CHAUDHARI HEMANTKUMAR<br>CHANDRAKANTBHAI | P       | P      | P     | P        | P      | ٩       | P        | P      | P     | P     | P   | P    | A    | P   | P   |
| 12 | CHAUDHARI KAUSHIKKUMAR<br>KAMLESHBHAI    | P       | P      | P     | P        | P      | P       | P        | A      | P     | A     | P   | P    | P    | P   | P   |
| 13 | CHAUDHARI MADHUSUDAN<br>MOTILAL          | P       | P      | P     | P        | P      | ŧ       | P        | P      | A     | P     | P   | P    | Nº F | A   | P   |
| 14 | CHAUDHARI NIRAJBHAI<br>JAGDISHBHAI       | P       | P      | P     | P        | P      | A       | P        | P      | P     | P     | P   | P    | P    | P   | P   |
| 15 | CHAUDHARI SAGARKUMAR<br>KARASHANBHAI     | P       | P      | P     | ρ        | P      | P       | P        | P      | P     | P     | P   | P    | P    | P   | P   |

| 16 | CHAUDHARI TARUNKUMAR<br>AJITBHAI        | P | P | P | P | P | P | P | P  | P | P | P | P | P  | P | P |
|----|-----------------------------------------|---|---|---|---|---|---|---|----|---|---|---|---|----|---|---|
| 17 | GAMIT POOJA DALUBHAI                    | P | P | A | P | P | P | P | P  | P | P | P | P | P  | P | P |
| 18 | KOSAMIA ZANVIKUMARI<br>KETANSINH        | P | P | P | P | P | P | P | P  | P | P | P | P | P  | P | P |
| 19 | NAIK CHETANBHAI<br>MANESHBHAI           | P | P | A | A | A | A | P | A  | P | A | A | A | P  | A | P |
| 20 | VASAVA MOTISING MANSING                 | P | A | A | P | A | P | P | A- | P | A | P | P | A  | P | P |
| 21 | CHAUDHARI<br>DIPANSHUKUMAR<br>RASIKBHAI | P | P | P | P | P | P | P | P  | P | P | P | P | P  | P | P |
| 22 | KESHAVBHAI<br>CHAUDHARI HITESHKUMAR     | P | A | P | P | P | P | P | P  | P | P | P | P | P- | P | P |
| 23 | CHAUDHARI PARVATIBEN<br>ARJUNBHAI       | P | P | P | A | P | P | P | P  | P | P | A | P | Р  | P | P |
| 24 | CHAUDHARI UTKARSH<br>BABUBHAI           | P | A | P | P | A | Ρ | P | A  | A | A | ٢ | P | A  | P | A |
| 25 | GAMIT VANDANA<br>VASVELBHAI             | P | P | P | P | P | P | P | P  | P | P | P | P | P  | P | P |
| 26 | SOLANKI DHARTIKUMARI<br>BALVANTSINH     | P | P | P | P | A | Ρ | P | P  | P | P | P | P | P  | P | P |
| 27 | VALVI ATULBHAI<br>LAXMANBHAI            | P | P | P | A | P | P | P | P  | A | P | P | P | A  | P | P |
| 28 | VASAVA FALGUNI<br>MUKESHBHAI            | P | P | P | P | A | P | P | P  | P | P | P | P | P  | P | P |
| 29 | VASAVA FALGUNI<br>MUKESHBHAI            | P | P | P | P | P | P | P | P  | P | P | P | P | P  | P | P |

Hered.P

Head Physics Department Govt. Science College, Vanka Ta Mangrol, Dist. Surat.

# **Government Science College, Vankal**

### Short term Course: Advancement in Green Energy Systems Course Code: STCPHY02 Duration: 30 hours (2 hours per lecture) Syllabus covered

### Day 1 (03/01/2022) (2 hours)

Module 1: Introduction to Green Energy Systems (Part 1) - Overview of green energy and its importance (2 hours)

### Day 2 (04/01/2022) (2 hours)

Module 1: Introduction to Green Energy Systems (Part 2) - History and development of green energy technologies (2 hours)

### Day 3 (05/01/2022) (2 hours)

Module 2: Solar Energy (Part 1) - Principles of solar energy and photovoltaic systems (2 hours)

### Day 4 (06/01/2022) (2 hours)

Module 2: Solar Energy (Part 2) - Solar panels and solar thermal systems (2 hours)

Day 5 (07/01/2022) (2 hours)
Module 2: Solar Energy (Part 3)
Case study: Designing and evaluating a small-scale solar power system (2 hours)

### Day 6 (08/01/2022) (2 hours)

Module 2: Solar Energy (Part 4) - Case study: Designing and evaluating a small-scale solar power system (continued) (2 hours)

Day 7 (10/01/2022) (2 hours) Module 3: Wind Energy (Part 1) - Principles of wind energy and wind turbines (2 hours)

Day 8 (11/01/2022) (2 hours)
Module 3: Wind Energy (Part 2)
Types of wind turbines and their applications (2 hours)

Day 9 (12/01/2022) (2 hours)
Module 3: Wind Energy (Part 3)
Case study: Analyzing wind patterns and designing a wind power system (2 hours)

Day 10 (17/01/2022) (2 hours)
Module 4: Bioenergy (Part 1)
Principles of bioenergy and biomass conversion (2 hours)

Day 11 (18/01/2022) (2 hours)

Module 4: Bioenergy (Part 2) - Biofuels and biogas production (2 hours)

### Day 12 (19/01/2022) (2 hours)

Module 4: Bioenergy (Part 3) - Case study: Evaluating biofuels from organic waste (2 hours)

### Day 13 (20/01/2022) (2 hours)

Module 5: Energy Storage and Grid Integration (Part 1)

- Importance of energy storage in green energy systems (1 hour)

- Types of energy storage technologies (batteries, supercapacitors, etc.) (1 hour)

### Day 14 (21/01/2022) (2 hours)

Module 5: Energy Storage and Grid Integration (Part 2)

- Grid integration and smart grids (1 hour)

- Case study: Implementing an energy storage system (1 hour)

### Day 15 (22/01/2022) (2 hours)

Module 6: Future Trends in Green Energy

- Emerging technologies in green energy (1 hour)
- Policy and economic aspects of green energy adoption (1 hour)
- Case studies of successful green energy projects (2 hours)

# **Government Science College, Vankal**

### Short term Course: Advancement in Green Energy Systems Course Code: STCPHY02 Duration: 30 hours (2 hours per lecture) Time Table

### Day 1 (03/01/2022) (2 hours)

Module 1: Introduction to Green Energy Systems (Part 1) - Overview of green energy and its importance (2 hours)

### Day 2 (04/01/2022) (2 hours)

Module 1: Introduction to Green Energy Systems (Part 2) - History and development of green energy technologies (2 hours)

### Day 3 (05/01/2022) (2 hours)

Module 2: Solar Energy (Part 1) - Principles of solar energy and photovoltaic systems (2 hours)

### Day 4 (06/01/2022) (2 hours)

Module 2: Solar Energy (Part 2) - Solar panels and solar thermal systems (2 hours)

Day 5 (07/01/2022) (2 hours)
Module 2: Solar Energy (Part 3)
Case study: Designing and evaluating a small-scale solar power system (2 hours)

### Day 6 (08/01/2022) (2 hours)

Module 2: Solar Energy (Part 4) - Case study: Designing and evaluating a small-scale solar power system (continued) (2 hours)

Day 7 (10/01/2022) (2 hours) Module 3: Wind Energy (Part 1) - Principles of wind energy and wind turbines (2 hours)

Day 8 (11/01/2022) (2 hours)
Module 3: Wind Energy (Part 2)
Types of wind turbines and their applications (2 hours)

Day 9 (12/01/2022) (2 hours)
Module 3: Wind Energy (Part 3)
Case study: Analyzing wind patterns and designing a wind power system (2 hours)

Day 10 (17/01/2022) (2 hours)
Module 4: Bioenergy (Part 1)
Principles of bioenergy and biomass conversion (2 hours)

Day 11 (18/01/2022) (2 hours)

Module 4: Bioenergy (Part 2) - Biofuels and biogas production (2 hours)

### Day 12 (19/01/2022) (2 hours)

Module 4: Bioenergy (Part 3) - Case study: Evaluating biofuels from organic waste (2 hours)

### Day 13 (20/01/2022) (2 hours)

Module 5: Energy Storage and Grid Integration (Part 1)

- Importance of energy storage in green energy systems (1 hour)

- Types of energy storage technologies (batteries, supercapacitors, etc.) (1 hour)

### Day 14 (21/01/2022) (2 hours)

Module 5: Energy Storage and Grid Integration (Part 2)

- Grid integration and smart grids (1 hour)

- Case study: Implementing an energy storage system (1 hour)

### Day 15 (22/01/2022) (2 hours)

Module 6: Future Trends in Green Energy

- Emerging technologies in green energy (1 hour)
- Policy and economic aspects of green energy adoption (1 hour)
- Case studies of successful green energy projects (2 hours)



# GOVERNMENT SCIENCE COLLEGE, VANKAL

# DEPARTMENT OF PHYSICS



### Sr. No. STCPHY02/2021-22/04

Date: 24/01/2022

This is to certify that  $\frac{Mr.}{Ms.}$  / Ms. <u>CHAUDHARI SMRUTI</u> <u>ALKESHBHAI</u> has successfully completed the Short Term Certificate Course on STCPHY02: Advancement in Green Energy Systems offered by Department of PHYSICS from 03/01/2022 to 22/01/2022 and secured <u>A</u> grade during performance evaluation.

Principal

**Course Coordinator** 





Date: 24/01/2022

This is to certify that Mr. / Ms. <u>CHAUDHARI JINALKUMARI NATHUBHAI</u> has successfully completed Short Term Certificate Course on STCPHY02: Advancement in Green Energy Systems offered by **Department of PHYSICS** from 03/01/2022 to 22/01/2022 and secured <u>A</u> grade during performance evaluation.

Principal

**Course Coordinator** 





## Sr. No. STCPHY02/2021-22/07

Date: 24/01/2022

This is to certify that Mr. / Ms. VASAVA AMISHABEN HARISINGBHAI has successfully completed Short Term Certificate Course on STCPHY02: Advancement in Green Energy Systems offered by Department of PHYSICS from 03/01/2022 to 22/01/2022 and secured <u>A</u> grade during performance evaluation.

Principal

**Course Coordinator** 





## Sr. No. STCPHY02/2021-22/18

Date: 24/01/2022

This is to certify that Mr. / Ms. KOSAMIA ZANVIKUMARI KETANSINH has successfully completed Short Term Certificate Course on STCPHY02: Advancement in Green Energy Systems offered by Department of PHYSICS from 03/01/2022 to 22/01/2022 and secured <u>A</u> grade during performance evaluation.

Principal

**Course Coordinator** 



## Sr. No. STCPHY02/2021-22/16

Date: 24/01/2022

This is to certify that Mr. / Ms. <u>CHAUDHARI TARUNKUMAR AJITBHAI</u> has successfully completed Short Term Certificate Course on STCPHY02: Advancement in Green Energy Systems offered by **Department of PHYSICS** from 03/01/2022 to 22/01/2022 and secured <u>A</u> grade during performance evaluation.

Principal

**Course Coordinator** 

# **Government Science College, Vankal**

Short term Course: Advancement in Green Energy Systems

Course Code: STCPHY02

Examination

Date: 22/01/2022 Marks: 50 Time: 30 minutes

### Multiple Choice Questions (MCQs) (2 marks each)

1. Which of the following best defines green energy?

- a) Energy derived from fossil fuels
- b) Energy produced without harming the environment
- c) Energy with the highest efficiency
- d) Energy that is expensive to produce
- 2. Which of the following was an early form of green energy technology?
  - a) Nuclear power
  - b) Hydropower
  - c) Coal power plants
  - d) Natural gas turbines

3. Photovoltaic (PV) systems convert sunlight directly into:

- a) Mechanical energy
- b) Chemical energy
- c) Electrical energy
- d) Thermal energy

4. What material is most commonly used in the production of solar panels?

- a) Copper
- b) Silicon
- c) Aluminium
- d) Gold

### 5. Which type of solar energy system uses mirrors or lenses to concentrate sunlight?

- a) Photovoltaic systems
- b) Solar thermal systems
- c) Wind energy systems
- d) Bioenergy systems
- 6. Which of the following is NOT a component of a small-scale solar power system?
  - a) Solar panels
  - b) Wind turbine
  - c) Inverter
  - d) Battery storage

7. What is a key factor in evaluating the efficiency of a solar power system?

- a) Size of the solar panels
- b) Distance from the sun
- c) Angle of installation
- d) Length of the power cables

- 8. The main disadvantage of solar energy is:
  - a) High maintenance cost
  - b) High pollution levels
  - c) Intermittency due to weather conditions
  - d) Incompatibility with other energy sources
- 9. Wind energy is primarily converted into electricity using:
  - a) Windmills
  - b) Wind turbines
  - c) Wind farms
  - d) Wind towers

### 10. Which of the following types of wind turbines is commonly used in offshore wind farms?

- a) Horizontal-axis wind turbines
- b) Vertical-axis wind turbines
- c) Helix wind turbines
- d) Darrieus wind turbines

### 11. What is the most critical factor for the efficiency of a wind turbine?

- a) Blade length
- b) Tower height
- c) Wind speed
- d) Foundation type

### 12. The Betz limit states that the maximum efficiency of a wind turbine is:

- a) 50%
- b) 59.3%
- c) 70%
- d) 90%

### 13. Wind energy is considered sustainable because:

- a) It relies on fossil fuels
- b) Wind is a renewable resource
- c) It produces large amounts of waste
- d) It requires large land areas

### 14. What is a key consideration in the design of a wind power system?

- a) Sunlight intensity
- b) Wind pattern analysis
- c) Soil quality
- d) Air pollution levels

### 15. Biomass is converted into energy primarily through:

- a) Combustion
- b) Photosynthesis
- c) Condensation
- d) Fission

### 16. Which of the following is an example of a biofuel?

- a) Diesel

- b) Ethanol
- c) Natural gas
- d) Coal

17. Biogas production primarily involves:

- a) Aerobic digestion of organic matter
- b) Anaerobic digestion of organic matter
- c) Combustion of fossil fuels
- d) Electrolysis of water

18. Which of the following is a potential source of biomass?

- a) Plastic waste
- b) Organic waste
- c) Metal scrap
- d) Glass

19. Evaluating biofuels from organic waste involves considering:

- a) Water content
- b) Energy content
- c) Temperature variations
- d) None of the above

20. Energy storage is crucial in green energy systems because:

- a) It reduces the need for energy production
- b) It allows energy to be stored for later use
- c) It increases energy consumption
- d) It eliminates the need for renewable energy sources

21. Which of the following is NOT a type of energy storage technology?

- a) Batteries
- b) Supercapacitors
- c) Steam engines
- d) Flywheels
- 22. A smart grid primarily helps in:
  - a) Producing more energy
  - b) Reducing energy losses
  - c) Integrating renewable energy sources
  - d) Decreasing energy storage needs
- 23. The main challenge in grid integration of renewable energy is:
  - a) High energy production costs
  - b) Variability and intermittency of energy supply
  - c) High levels of pollution
  - d) Limited availability of renewable resources
- 24. Which of the following is an emerging technology in green energy?
  - a) Coal power
  - b) Solar hydrogen production
  - c) Oil drilling
  - d) Nuclear fusion

- 25. Policy and economic aspects of green energy adoption include:
  - a) Carbon pricing
  - b) Fossil fuel subsidies
  - c) Water conservation
  - d) Mining regulations





| Government Sc<br>Short term Course: A<br>Course C                                                                                                                      | <b>ience College, Vankal</b><br>dvancement in Green Energy<br>Code: STCPHY02      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Vame of the Student: Vasarren<br>Coll no.: 7<br>Date: 22-01-2022                                                                                                       | Amishaben Harisingbhai                                                            |
| Signature of the Invigilator:                                                                                                                                          | Marks: 4°<br>50                                                                   |
| 1. a € c d £. a € c d 11.<br>2. a € c d 5. a € c d 14.<br>3. a € d 8. a € d 13.<br>4. a € c € 9. a € c d 14.<br>4. a € c € 9. a € c d 14.<br>4. a € c € 9. a € c d 14. | $\begin{array}{c} (a) b (b) (d) & (a) (b) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d$ |

| Government Sc<br>Short term Course: A<br>Course C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Advancement in Green Energy<br>Code: STCPHY02<br>OMR Sheet                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name of the Student: Koscini,<br>Roll no.: 18<br>Date: 22-01-2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a Zanvikumani Ketansint                                                                                                                                                                                                                                |
| Signature of the Invigilator:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Marks:                                                                                                                                                                                                                                                 |
| 1. a € c d & . a € c d 11.<br>3. a b € d 7. a b c € 12.<br>3. a b € d 8. a b € d 6.<br>4. a € c d 2.<br>4. a € c d 2.<br>4. a € c d 2.<br>5. a b € d 6.<br>15.<br>15.<br>10. b c d 10.<br>10. b c d 15.<br>15.<br>10. c d 10.<br>10. c d 10. | $\begin{array}{c} a & b & 0 & 16 \\ a & c & d & 24 \\ a & c & d & 17 \\ a & c & d & 22 \\ a & c & d & 17 \\ a & c & d & 22 \\ a & c & d & 18 \\ a & b & d & 23 \\ a & c & d & 18 \\ a & c & d & 19 \\ b & c & d & 24 \\ b & c & d & 25 \\ \end{array}$ |

•

|                                           | ice College, valikal    |
|-------------------------------------------|-------------------------|
| Short term Course: Adva                   | ncement in Green Energy |
| Course Code                               | e: STCPHY02             |
| OMR                                       | Sheet                   |
| Name of the Student: Chaudhan to          | ancheumer Afflibha      |
| Date: 22-01-2022                          |                         |
|                                           |                         |
| Signature of the Invigilator:             | Marks:                  |
|                                           |                         |
| Clement.                                  | 53                      |
|                                           |                         |
|                                           |                         |
| vr. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                         |
| ∕2. ૄ ; @ ● ⓒ ⓓ 7! ♠ ● ⓒ ⓓ 12. ④          |                         |
| -3. ab d d & ab d d 13. a                 |                         |
|                                           |                         |